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SECTION 1 

INTRODUCTION 

This program is directed to a theoretical treatment of 
detonation behavior by numerical integration of the basic time de- 
pendent equations which define the detonation process. Ultimate ob- 
jective is to perform such integration in two space dimensions so that 
the effect of geometry upon behavior (for example the phenomena of 
critical size) can be predicted in the case of large charge sizes. 
The detailed form of the basic equations, and numerical.procedures 
used in their integration have been described in previous reports. 

During the present report period, one minor refinement has 
been made in the mathematical procedures. This was primarily in the 
interest of completeness, rather than any anticipated significant 
effect on the results of the integration. An important development 
has been the discovery that the use of the von Neuman "q" in inte- 
grating through a reactive shock can, under some circumstances, 
falsify the entropy increase and, as a consequence, seriously affect 
the computed final steady state propagation velocity. This is now 
regarded as the most likely explanation for the high computed steady 
state velocities discussed in the last quarterly and previous re- 
ports . Some changes in procedure will be required as a consequence 
of this discovery. 

The two dimensional program is now in the final checkout and 
debugging stage. It is being actively pressed and should be completed 
soon. This will be affected somewhat by the problem associated with 
the von Neuman "q" described above. 

The equation of state work is progressing at an accelerated 
pace. Data are presented in this report on polyurethane. Procurement 
of data on inorganic salts such as ammonium perchlorate, and other 
organic binders, and composite mixtures of the two is presently underway, 

•1- 
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SECTION 2 

ONE DIMENSIONAL METHODS 

2.1 MATHEMATICAL DETAILS 

The one dimensional computer program has been subjected to 
refinement in the detailed treatment of energy exchange between the 
solid and gaseous phases as discussed in Reference 3, Equations 2-6, 
inclusive. In this derivation, terms involving d7 previously were 
neglected as a matter of convenience. The effect of this was regarded 
to be negligible; nevertheless, in the interest of completeness, mod- 
ification of the program to include such terms has been made. 

Starting with Equation 2 of Reference 3, one has : 

(p +ß)vs = (7S - l)es + c 

Since 

(p +ß)dv+ v dp = (7    - l)de   + e d7 
o S faSS 

de -pdv 

P e d7    1 s s — +7   - —  
p        ' s      p dv 

din p 
din v 

pdv    = -v dp 
s s 

e    d7 
s  s — + 7  

p        ' s      p    dv 
s 

Symbols are defined in Reference 3. 

3(s) 
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nand for the gas (ß = 0) 

din p 
din v 

g 

e    d7 
"V -   —A 

g     p    dv 
g 

4(s) 

Equation 6, Reference 3, then becomes 

dv ' 
g 

dv - (v - v ) df 
 s   g  s 

1 - f 

e d 7 
v   7     J s I ' g  p dv 

g 
(e d7 I 
(ß/p) + 7 --i-pJM J 
^ '^ 's p dvo I 

6(s) 

With this change, Equations 20 and 21 become 

,  -n+1      -nv       -    n       n.   .. n    , n-fL ■i (v        - v    )   - (v    - v    )   (f    - f        ) n+1 n ,    j        v g       s /      s       s      ' 
V        = v     +     —a  

nfl + (1 - fn+1) (i)n - v '     p   n 
s      F g 

20(s) 

,  -rri-1      -n.       ,    n     n.    .. n    £ nfl, 
,, (v       - v    )   - (v    -v    )  (f    - f        ) 

n+1 n, gs/vs        s 
V = v      +     6  

g g , „   n n ^ 

1 - f 
V n 

CY^l) 
,    n      ns   ,. n , n+1.   ,   n nfl 
(e    -e    )  (f    -f       ) + " v s      g /  v s      s  

(1 - f n+1) 
v   n   1-f 

p"7;i+ (P
I
\ "+ß)(^) (- 

s       f 

n+1 
n _    n  .   / n.    n. „ x / g.   ,      s 

s v.'       , nfl 
s 

21(s) 
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iere: 
ß n ("Y n    ^ n-l" 

n           _s s s 
's n n   ,    n n-1 

P    (vs    " v
s      ) 

e n   f7 n -7 n"\ 
rg n     ,   n n-lv P       fv      - v 

n+1 
fi =    F 2Q2(f ̂ -f-1) + F3Q3(f3

n. 
n+1 n+L 

f3      )+Q4(f4-f4      ) 

The differencing scheme for evaluation of -r^- is not of high accuracy. 

However, it is regarded as suitable for present purposes. 

As expected, the effect of this correction on wave behavior is 
found to be negligible for the cases presently under treatment. This is 
shown by the wave trajectory of Figure 1, curve "a" which was computed 
using the corrected program and the same input data as for the trajectory 
shown on Figure 5 of Reference 1. The two curves are essentially identical. 

2.2 STEADY STATE PROPAGATION VELOCITY 

Recent one dimensional calculations on TNT have encountered 
difficulty in that the ideal steady state detonation velocities obtained 
with computed waves are about 12 mm./|U sec, 60 percent higher than the 
values predicted from steady state theory. The explanation for this dis- 
crepancy has been subjected to considerable scrutiny during this report 
period, since the correct prediction of steady state values is an im- 
portant test of the validity of the computational techniques. As dis- 
cussed briefly in Reference 2, one possible explanation for the high 
steady state velocity is that values used for the equation of state 
parameters are incorrect. 

The sensitivity of final wave propagation velocity to one of 
the equation state parameters was examined by comparison of the tra- 
jectories obtained at two difference values of the parameter "b" which 
defines 7 according to the expression 

7= 7o + (-) + (-)' v   v ^0-l) 
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These were b = 1.03 (the value used in all previous calculations on this 
program) and b = 0.66. At the specific volumes appearing in the problems, 
these values of b correspond to maximum 7's of 5.3 and 3.8, respectively. 

Results of the calculation are shown on Figure 1, curves a and b. 
Other input data were as indicated in the previous section for curve "a". 
Use of b = 0.66 leads to a steady state velocity of 7.9 wm./jj, sec, much 
closer to the value of about 7 itm./jLt sec deduced from the theoretical steady 
state treatment than the 11.8 mm./ji  sec shown for b = 1,03. It is clear 
that a slight additional adjustment in "b" would produce the correct 
behavior. 

The value of b = 1.03 was deduced, as discussed in Reference 2 
from some data on the equation of state of explosive reaction products 
obtained by M. A. Cook. This data, and in particular its use for the 
equation of state of the solid phase is not beyond question. Nevertheless, 
before attributing the high steady state velocities to uncertainty in this 
data or its application to the present problem, it was thought desirable 
to re-examine the mathematical procedures for other possible sources of 
error. It has appeared that the steady state velocities may depend in a 
very significant way upon the details of the numerical integration in the 
vicinity of the shock front, and that methods now used may be inadequate 
in this region. 

The integration presently makes use of a procedure devised by 
von Neuman and Richtmeyer^ for integrating numerically through the math- 
ematical discontinuity which exists at a shock. Their procedure was to 
add a quantity "q" to the equations of motion. The "q" is generally 
likened to an artificial viscosity and is so constituted that it converts 
the shock discontinuity into a continuous function which changes rapidly 
over a few space zones from the situation in front of the shock to the 
situation behind the shock. It is designed to produce the correct shock 
energy, velocity, and pressure relations before and after the regions in 
which it is active, but falsifies these variables within this region. It 
was shown also to provide for the correct work loss due to entropy increase 
across the shock region. 

The so-called von Neuman "q" was originally used with unreactive 
shocks and provides for the correct treatment of such shocks by numerical 
methods. In the case of reactive shocks such as occur in detonation, it 
can again be shown that the use of the "q" in the conservation equations 
does not affect the energy, pressure and velocity quantities on the two 
sides of the front. However, in this case, definition of a propagation 
velocity requires an additional relation generally known as the Chapman- 
Jouguet condition.  It now appears that under some circumstances use of 
the von Neuman "q" can lead to an incorrect Chapman-Jouguet condition. 
This point can be understood by means of the following arguments. 

-6- 
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Figure 2a shows an actual pressure profile through a detona- 
tion wave as envisioned in terms of the hydrodynamic theory.. The wave 
is initiated as a shock in which the pressure rises discontinuously from 
DA to p„.  Reactions start at pressure ^^  and continue until completion 
at the Chapman-Jouguet point, p.. 

Figure 2b shows the same wave computed using equations which 
include the von Neuman "q". Here the wave initiates with a gradually 
rising continuous pressure front which has a rounded off peak pres- 
sure, pj.  In between there is a region of steeply rising pressure. 
The "q" used in the calculation is computed continuously through the 
rising pressure region as proportional to the square of the rate of com- 
pression, and provides for the same total energy deposition at the peak 
of the wave, ^^   as i-11 a shock process. In both cases the propagation 
velocity is given by 

V vn -v 
(1) 

With the situation represented as in Figure 2b, it is evident 
that if chemical reaction in the charge is readily initiated, such 
initiation may take place during the initial part of the pressure rise 
and reaction may be largely complete by the time the material has passed 
through the front and reached the point, P2. Thus, in contrast to the 
situation represented in Figure 2a, a major part of the chemical reaction 
and the corresponding heat release occurs, in effect, as part of the wave 
shock process. This has been observed to occur in typical examples of 
computed waves. 

The consequences of this behavior in terms of wave velocity 
can be appreciated by consideration of a typical Hugoniot diagram as 
shown on Figure 3. According to the conventional interpretation ', 
Figure 2a is represented on such a diagram as a process in which an in- 
crement of material starts at 0 as undisturbed material, jumps to 2 on 
passing through the lead shock and then moves down the line 21 while 
undergoing reaction, to 1, the Chapman-Jouguet point. At point 2, 
energy deposited by the shock in unreacted material is given by area 042. 
In the subsequent expansion to point 1, work represented by area 4216 is 
performed and the reaction energy, Q, is released. Thus, at point 1, 
energy remaining in the system is given by area 061 + Q. In the repre- 
sentation of the process shown in Figure 2b on a Hugoniot diagram, it 
is convenient to consider the extreme case in which reaction has gone to 
completion by the time point 2 is reached. In this circumstance, points 
1 and 2 coincide and on Figure 3 the system goes directly from point 0 to 
point 1. Since this is treated as a shock transition, energy equivalent 
to area 061 is deposited in the process. The system energy at point 1 
therefore is equivalent to area 061 + Q, exactly as before. 
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The first process can be considered as an isentropic com- 
pression along the adiabat 053, followed by heating (via shock dis- 
sipation) along 32 with a corresponding increase in entropy given by 

f 
/ TdS = area 032, thence isentropic expansion along the adiabat 27, 
J3 
followed by heating due to reaction along 71, the latter involving a 

r1 
further entropy increase given by I TdS = Q (the heat of reaction). 

^7 
The second process is made up of compression along the adiabat 05, 
and heating along 51 (due to chemical reaction and shock dissipation) 

f1 
with entropy increase corresponding to TdS = area 051. Considering 

that temperatures are highest at the Chapman-Jouguet point, it is 
apparent from these relations that the entropy increase in the second 
process is smaller than the first. Since the final energy content is 
the same in both cases, it must be concluded that the second process 
results in a higher pressure at the Chapman-Jouguet point than does the 
first. The second process cannot, therefore, terminate at point 1, but 
must instead arrive at some point at a higher pressure, such as 8. From 
equation (1), the relative propagation velocities in the two cases will 
be given by ratio of the square root of the slopes of the lines 01 and 08. 
It thus becomes evident that the situation represented by Figure 2b will 
correspond to a higher velocity than the value deduced from the steady 
state treatment. 

The foregoing considerations further suggest that propagation 
velocities as deduced from the steady state treatment will be obtained 
if reaction is not permitted to occur until the system has passed com- 
pletely through the shock zone, i.e., until point P2, Figure 2b, or 
point 2, Figure 3, is reached. In effect, this forces the system to go 
through the sequence, shock compression from point 0 to 1 (Figure 3) and 
expansion with reaction along line 21, as is implied in the steady state 
treatment. This has been subjected to verification by computing a wave 
trajectory in which the IBM 709 was arbitrarily programmed to provide 
such a reaction delay. Results are shown on Figure 4 as curve 1. For 
comparison purposes, curve 2 is included which is the trajectory shown 
on Figure 5 of the last quarterly report , obtained with no restrictions 
on reaction. Other input data was identical for the two curves and is as 
previously reported . 

The difference between the two curves is pronounced, and in- 
dicates that the effect discussed is very important. Because of the long 
reaction zone existing in the wave, curve 1 never accelerated to steady 

-10- 
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state. It is therefore not ascertained whether the programmed reaction 
delay leads to the correct steady state velocity. However, it is clear 
that the details of the mathematical treatment in the vicinity of the 
wave shock zone are more important than has heretofore been thought to 
be the case. A number of procedures for obtaining a more correct treat- 
ment are possible and these are presently being considered. 

It should be: noted that this problem does not affect the 
validity of the calculations on minimum pressure for initiation of ex- 
plosive materials, as discussed in previous reports ' . This is because 
in those cases, the critical point was that at which reaction ceased in 
the wave. At this point, the wave becomes an unreactive shock, and the 
present procedures are correct for an unreactive shock. 

-12- 
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SECTION 3 

TWO DIMENSIONAL PROGRAM 

Mathematics and coding are essentially complete and de- 
bugging is now in process on this program. However, ^.t is subject to 
the considerations discussed in the previous section and may have to 
be delayed until improved procedures for treating the shock transition 
are developed. Any such delay should be of short duration. Every 
effort is being made to get this program running as soon as possible. 

■   i 
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SECTION 4 

EQUATION OF STATE STUDIES 

The equation of state studies have involved some work on 
the refinement of techniques and calibration of equipment. However, 
a major part of the effort during this report period was directed to 
studies on the equation of state of polyurethane. 

Methods were as described in the last quarterly report. 
Data is obtained in the form of a plot of pressure vs. piston movement 
over the up and down legs of a pressurization cycle. These legs diverge 
from the ambient pressure point due to a combination of piston sliding 
friction, and sample internal friction. This is the same in both di- 
rections^ and therefore symmetrical around a center curve except for a 
distorted region at each end due to the reversal of motion. 

The magnitude of the frictional forces is indicated by the 
horizontal separation of the up and down legs in the symmetrical region. 
Press sliding friction is a function of pressure but independent of 
specimen material so that variations in separation for different mater- 
ials or conditions are normally due to differences in sample internal 
friction, i.e., viscosity. Information on this property is of signif- 
icant scientific interest, particularly in the present instance since it 
may afford some insight into possible differences between the equation 
of state observed under the present static methods, and that which applies 
to conditions of shock loading as encountered in a detonation process. 
No attempt at a detailed analysis on this basis has been made. The 
question will be examined further at a later date. 

Data*on two typical press cycles to 26 and 40 kilobars and at 
ambient temperature are shown in Figure 5 as plots of/^l/l vs. pressure 
(1 --  sample length). The values of ^1 include a correction for press 

*Data on the polyurethane specimen are shown in Table I. 

-14- 
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TABLE I 

PREPARATION OF POLYURETHANE SPECIMEN 

Polymer 

Polypropylene glycol 2025 83.30% 

Tritnethylol propane 3.19% 

Ferric acetylacetonate 0.125% 

Toluene - 2,4 - diisocyanate 13.85% 

Cure 24 hours (? 160 F, 

Sample 

3 
Density 1.068 g/cm 

Sample wt. 5.0532 g 

3 
Sample initial volume 4.729 cm 

•15- 
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distortion obtained by running a similar cycle with no specimen in the 
pressure chamber. The midpoint between the up and down legs is indi- 
cated as curves 231 and 23H which are extrapolated (dashed portion) be- 
yond the region of symmetry. The validity of the symmetry assumption 
is supported by the cluse agreement of these centered curves. 

The press cycle and centered curve for polyurethane at 100 C 
is shown in Figure 6. Evident here is an increase in compressibility and 
a decrease in internal friction, the latter shown by the reduced separa- 
tion between the up and down legs. Increase in compressibility with 
temperature is normal behavior for many organic substances. 

Final p-v curves for the ambient and 100° temperatures are 
shown in Figure 7. A slight increase in volume as well as the increase 
in compressibility with temperature is noted at ambient pressure. Be- 
cause of this, the curves for the two temperatures cross at about 2.5 kbar. 
In the region of 25 to 40 kbar the compressibility decreases with temper- 
ature as would be expected. 

Attempts at interpretation of this work in terms of a general 
equation of state will be deferred until more complete data becomes 
available. 

■17- 
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